
Separators
See Also
History List MenuAfter MaxHistory

The Separators property allows you to specify menu separators above and below the
History List.

The possible values for the Separators property are:

¨ msTop Include separator above History List
¨ msBottom Include separator below History List
¨ msBoth Include both top and bottom separators
¨ msNone Do not create any separators

If you define a top level menu item for the sole purpose of displaying the History List, you
will likely want to set Separators to msNone.

If you are displaying the History List within another menu, for example; to follow the Save As
menu item within the File menu, you will likely set Separators to msBoth.

If the History List will appear at the top or bottom of a menu that has other items on it, you
would use either msTop or msBottom.

If you have already placed a separator in your menu and you assign this to MenuAfter,
then you will likely want to set Separators to msBottom.

FormCapOption
The FormCapOption, of type TCaptionOpt, allows you to specify handling for the parent
form's title bar (Caption property). The possible settings are:

¨ coOff Do not handle form's caption
¨ coWin31 Format in Windows 3.x style
¨ coWinNew Format in "Windows '95" style

The Windows 3.1 style is normally the executable name of the application followed by the
currently open document, for example:

MyApplication: C:\Delphi\SomeFile

The new style that should be used with Windows '95 is the name of the currently open
document followed by the executable name of the application in brackets, for example:

SomeFile - MyApplication

MenuAfter
See Also
HistoryList MaxHistory Separators

If you wish to implement the History List feature of NOSC, you must tell NOSC where to place
it. You do this through the MenuAfter property. When you click the setting field for
MenuAfter in the Object Inspector, you'll be able to display a list of all TMenuItem
components currently defined in your form (this implies, of course, that you must already
have defined a menu for the form).

The History List will appear directly below the menu item you specify in MenuAfter.

You are free to set MenuAfter to any available TMenuitem component. it can be a sub-
menu item within another, for example; the Save As menu item within the File menu, or it
can be a top-level menu item. If you select a top-level menu item, the File History will always
appear as the first set of items in that menu; any other menu items you define for that menu
will follow the File History.

MaxHistory
See Also
HistoryList MenuAfter

The MaxHistory property allows you to specify the maximum number of file names to be
stored in the History List. If you do not want to use the File History feature, simply set
MaxHistory to zero.

MaxHistory defaults to a value of nine. This is generally the most you would want to allow
as this allows each file name to be prefixed with an accelerator key using the digits from 1 to
9. This many also fit comfortably in a File menu containing just the standard menu items of
New, Open, Save, Save As, and Exit. If your File menu contains more than these standard
items, you will likely want to decrease the MaxHistory setting.

If you are defining a top-level menu item for the sole purpose of containing a File History,
then you can comfortably set MaxHistory to more than nine. In this case, only the first nine
history menu items will have accelerator keys assigned (digits 1 to 9). All following history
menu items will need to be selected without the use of an accelerator (this generally isn't a
big concern).

IniFileName
See Also
KeepIniLocal IniFile

In order to implement the History List, and other features, NOSC must store information in
an initialization file. The IniFileName property defines the file name given to the
initialization file. When you first look at this property in the Object Inspector, you will see a
default name of "[ExeName].INI". This, of course, is not the actual name NOSC will try to
use, it's NOSC's way of telling you that the file will be named according to the executable
name of your application. For example, if you compile your project to an executable name of
WIDGET.EXE, then NOSC will use an initialization file called WIDGET.INI.

Although not recommended, you are allowed to change this default to any legal file name
you wish to use.

You do not need to be concerned with creating the initialization file; NOSC will create and
maintain the file automatically through the use of Delphi's standard TIniFile component. You
also have access to the TIniFile component at runtime via the IniFile property. This means
you are free to use IniFile to store and retrieve any other information you may need for your
application in the same initialization file without needing to define and instantiate your own
TIniFile component.

IniFile
See Also
KeepIniLocal IniFileName

IniFile is a runtime-only property that gives you access to the application's initialization file.
NOSC creates this component in order to save information about the current state of its
various features. You are free to access this property and its methods in order to store any
other information you need for your application. There is no need to create your own TIniFile
component unless you wish to maintain another initialization file with a different name.

NOSC stores all of its information in a single section called [History]. Although you can also
store information in this section, it is advisable to create your own section names to insure
you do not conflict with any key values within the [History] section needed by NOSC..

SaveFormPos
See Also
IniFile

SaveFormPos is a Boolean property. If set True, NOSC will store the Form's current size and
position information to the initialization file before closing. Each time the application is run, it
will retrieve this information and set the opening size and position of the form accordingly.

AutoOpen, AutoNew
See Also:
OnOpen OnNew Open and Save Dialogs UntitledString

If you set AutoOpen to True, NOSC will check the current file name as loaded from the
initialization file. If it is the name of an existing file, NOSC will issue an immediate OnOpen
event. If this name does not represent an existing file, and the AutoNew property is not set,
the user will first be presented with the Open Dialog. If the user selects a file from the Open
Dialog, NOSC will then issue the OnOpen event, else the application will display initially
with [Untitled] as the file name. If AutoNew is also set and there is no valid file to be auto-
opened, NOSC will instead issue an immediate OnNew event.

If AutoNew is set and AutoOpen is not, NOSC will immediately issue an OnNew event
when the application starts.

KeepIniLocal
See Also
IniFile IniFileName

KeepIniLocal is a Boolean property that allows you to control where NOSC stores your
application's initialization (INI) file.

Setting KeepIniLocal to True causes NOSC to store the initialization file in the same
directory as the application's executable module. Setting it to False causes the initialization
file to be placed in the Windows directory.

UntitledString
The UntitledString property lets you define what string is to be displayed in place of a file
name when there is currently no existing file open or when the user creates a new file. The
default is [Untitled], but you can set this to anything you like.

MenuNew
See Also:
MenuOpen MenuSave MenuSaveAs Events

If you have a menu item to allow the user to create new files (normally called New), assign
this menu item to the MenuNew property in Object Inspector. This allows NOSC to handle
OnClick events for this menu item.

MenuOpen
See Also:
MenuNew MenuSave MenuSaveAs Events

If you have a menu item to allow the user to open files (normally called Open), assign this
menu item to the MenuOpen property in Object Inspector. This allows NOSC to handle
OnClick events for this menu item.

MenuSave
See Also:
MenuNew MenuOpen MenuSaveAs Events

If you have a menu item to allow the user to save changes to files (normally called Save),
assign this menu item to the MenuSave property in Object Inspector. This allows NOSC to
handle OnClick events for this menu item.

MenuSaveAs
See Also:
MenuNew MenuOpen MenuSave Events

If you have a menu item to allow the user to save files under a different name (normally
called Save As), assign this menu item to the MenuSaveAs property in Object Inspector.
This allows NOSC to handle OnClick events for this menu item.

FileName
The FileName property contains the name of the file currently open, or, if current file has
not yet been given a name, it will be equal to the UntitledString property.

When you receive an OnOpen event, FileName is the file to be opened.

When you receive an OnSave, OnSaveAs, or OnSaveQuery event, FileName is the name to
use for saving the file.

osDefaultExt
See Also:
Open and Save Dialogs Properties

The osDefaultExt property represents the DefaultExt property of both the TOpenDialog
and TSaveDialog components. Set this property as you would for either of those
components.

osFilter
See Also:
Open and Save Dialogs Properties

The osFilter property represents the Filter property of both the TOpenDialog and
TSaveDialog components. Set this property as you would for either of those components.

osFilterIndex
See Also:
Open and Save Dialogs Properties

The osFilterIndex property represents the FilterIndex property of both the TOpenDialog
and TSaveDialog components. Set this property as you would for either of those
components.

osOpenOptions
See Also:
Open and Save Dialogs Properties osSaveOptions

The osOpenOptions property represents the Options property of the TOpenDialog
component. Set this property as you would it.

NOSC initializes this property with the options most commonly needed for a typical
application and there is a good chance you will not need to alter them. When you place your
own TOpenDialog component, all options default to all False, NOSC defaults the following
options to True:

ofHideReadOnly ofPathMustExist ofFileMustExist ofShareAware
ofNoReadOnlyReturn

osSaveOptions
See Also:
Open and Save Dialogs Properties osOpenOptions

The osSaveOptions property represents the Options property of the TSaveDialog
component. Set this property as you would it.

NOSC initializes this property with the options most commonly needed for a typical
application and there is a good chance you will not need to alter them. When you place your
own TSaveDialog component, all options default to all False, NOSC defaults the following
options to True:

ofOverwritePrompt ofHideReadOnly ofPathMustExist ofFileMustExist
ofCreatePrompt ofShareAware

osOpenTitle
See Also:
Open and Save Dialogs Properties osSaveTitle

The osOpenTitle property represents the Title property of the TOpenDialog component.
Set this property as you would it.

osSaveTitle
See Also:
Open and Save Dialogs Properties osOpenTitle

The osSaveTitle property represents the Title property of the TSaveDialog component.
Set this property as you would it.

osOpenHelpCtx
See Also:
Open and Save Dialogs Properties osSaveHelpCtx

The osOpenHelpCtx property represents the HelpContext property of the TOpenDialog
component. Set this property as you would it.

osSaveHelpCtx
See Also:
Open and Save Dialogs Properties osOpenHelpCtx

The osSaveHelpCtx property represents the HelpContext property of the TSaveDialog
component. Set this property as you would it.

OnNew
See Also:
OnOpen OnSave OnSaveAs OnSaveQuery OnCloseQuery

Open and Save Dialogs

The OnNew event is issued to you by NOSC when the user selects the menu item named (or
corresponding to) New.

Before issuing the OnNew event, NOSC first issues an OnSaveQuery event. This allows you
to check for unsaved changes and whether the user wants to save them. If they are to be
saved, NOSC then checks to see if the current file has a valid name. If not, it will display the
Save Dialog. Once there is a valid name, NOSC will issue an OnSave event so you can
perform the actual save. NOSC will then issue an OnNew event so you can perform the
appropriate preparations.

When you receive an OnNew event, simply perform whatever is required to prepare for a
new file.

Example:

procedure TForm1.NOSC1New(Sender: TObject; var Proceed: Boolean);
begin
    Memo1.Clear;
    Memo1.Modified := False;
end;

The Proceed parameter defaults to True on the assumption you will honor the user's New
menu selection. If, for any reason, you cannot honor the request, you can set the Proceed
parameter to False in order to inform NOSC that the currently open file is to remain current.
For the user's benefit, you should disable or gray the New menu item if you know
you are not going to honor that selection.

OnOpen
See Also:
OnNew OnSave OnSaveAs OnSaveQuery OnCloseQuery

Open and Save Dialogs

The OnOpen event is issued to you by NOSC when the user selects the menu item named
(or corresponding to) Open.

Before issuing the OnOpen event, NOSC first issues an OnSaveQuery event. This allows you
to check for unsaved changes and whether the user wants to save them. If they are to be
saved, NOSC then checks to see if the current file has a valid name. If not, it will display the
Save Dialog. Once there is a valid name, NOSC will issue an OnSave event so you can
perform the actual save. NOSC will then issue an OnOpen event so you can perform the
actual load and display of the file.

When you receive an OnOpen event, simply perform whatever is required to open and
display selected file. The name of the file to be opened is in the FileName property.

Example:

procedure TForm1.NOSC1Open(Sender: TObject; var Proceed: Boolean);
begin
    Memo1.Lines.LoadFromFile(NOSC1.FileName);
    Memo1.Modified := False;
end;

The Proceed parameter defaults to True on the assumption you will honor the user's Open
menu selection. If, for any reason, you cannot honor the request, you should set the Proceed
parameter to False in order to inform NOSC that the currently open file is to remain current.
For the user's benefit, you should disable or gray the Open menu item if you know
you are not going to honor that selection.

OnSave
See Also:
OnNew OnOpen OnSaveAs OnSaveQuery OnCloseQuery

Open and Save Dialogs

The OnSave event is issued to you whenever the current file requires saving. If the user
selects the Save menu item, then the OnSave event is passed to you directly (NOSC will
first present the user with the Save Dialog if the current file has not yet been given a name).
For all other menu selections, the OnSave event is always preceded by the OnSaveQuery
event.

When you receive an OnSave event, you simply need to perform the actual save.

Example:

procedure TForm1.NOSC1Save(Sender: TObject; var Proceed);
begin
    Memo1.Lines.SaveToFile(NOSC1.FileName);
end;

If, for any reason, you are not able to honor the save request at this time, you should set the
Proceed parameter to False in order to inform NOSC. In this situation, NOSC will stop
whatever action was in progress and the current file name will remain current.

OnSaveAs
See Also:
OnNew OnOpen OnSave OnSaveQuery OnCloseQuery

Open and Save Dialogs

The OnSaveAs event is only issued to you by NOSC whenever the user selects the menu
item named (or corresponding to) Save As.

The main purpose of the OnSaveAs event is to simply inform the application that the user
has requested this. It allows a chance to make any other preparations that may be
necessary for the application. If you know beforehand you are not going to allow this action,
you should disable or gray the Save As menu item (or not provide that menu item at all if
you will never allow it). If necessary, you can set Proceed to False in order to disallow the
request.

Example:
This example stops NOSC from displaying the Save Dialog for the user and cancels further
related action.

procedure TForm1.NOSC1SaveAs(Sender: TObject; var Proceed: Boolean);
begin
    Proceed := False;
end;

OnCloseQuery
See Also:
OnNew OnOpen OnSave OnSaveAs OnSaveQuery

Open and Save Dialogs

The OnCloseQuery event is issued to you by NOSC when the user attempts to close the
application via the Close menu item within the application's control menu, or the <Alt>-
<F4> shortcut, or if you call the form's Close method in your code.

NOSC passes this message on to you directly. You only need to respond to this event if there
may be circumstances where you want to stop the application from being closed. By not
coding a response method for it, or by responding but not setting CanClose to False, NOSC
will subsequently issue an OnSaveQuery and possibly an OnSave event before allowing
the application to terminate.

Example:
This example shows how to stop the application from terminating. Subsequent
OnSaveQuery and OnSave events are cancelled.

procedure TForm1.NOSC1CloseQuery(Sender: TObject; var CanClose: Boolean);
begin
    CanClose := False;
end;

Create
See Also:
Destroy

You should never need (or want) to create a TNOSC component dynamically. A TNOSC
component should be placed on your form at design-time. This will cause the Create
constructor to be called by the form.

Destroy
See Also:
Create

You will normally never need to use the destroy method yourself. Since you should always
want to place a TNOSC component on your form at design-time, your form will automatically
call TNOSC.Destroy for you.

Tasks
See Also:
Properties Events

Basic Tasks
To implement the basic functionality of NOSC, assign the New, Open, Save, and Save As
menu item components to the MenuNew, MenuOpen, MenuSave and MenuSaveAs
properties of NOSC in the Object Inspector. On the Events page of Object Inspector, double-
click the OnNew, OnOpen, OnSave, OnSaveAs and OnSaveQuery events (For more
detail on these events, click Events above).

Additional Tasks
To implement the History List feature, click on the MenuAfter property and assign it to the
menu item you wish the History List to follow. Typically this will be the File|Save As menu
item, but it can be anywhere you like including top-level menu items. Optionally, change the
MaxHistory property to any number you like (defaults to nine). Optionally set the
Separators property to indicate which, if any, menu separators you want NOSC to use.

You can change control the name of the TIniFile component through the IniFileName
property and you can control where this INI file is stored with the KeepIniLocal property.

You can have NOSC save the position and size of your form and automatically use this
information each time your application starts by setting the SaveFormPos property to True.

You can have NOSC automatically update the form's Caption to display the name of the
currently open file by setting FormCaptionOpt to either coWin31 or coWinNew.

You can have NOSC send an immediate OnOpen or OnNew event each time the application
starts by setting the AutoOpen and/or AutoNew property to True.

Properties
See Also:
Events Tasks

The following are runtime and read-only only properties:

FileName HistoryList IniFile

NOSC provides the following published properties:

AutoOpen AutoNew FormCapOption IniFileName
KeepIniLocal MaxHistory MenuAfter MenuNew
MenuOpen MenuSave MenuSaveAs SaveFormPos
Separators UntitledString

The following published properties operate directly on the Open and Save Dialogs:

osDefaultExt osFilter osFilterIndex osOpenEditStyle
osSaveEditStyle osOpenOptions    osSaveOptions osOpenTitle

osSaveTitle osOpenHelpCtx osSaveHelpCtx

osOpenEditStyle, osSaveEditStyle
See Also
Open and Save Dialogs Properties History List

The osOpenEditStyle and osSaveEditStyle properties make visible the FileEditStyle
property of the OpenDialog and SaveDialog components and can be set the same way
(fsEdit or fsComboBox).

If set to fsComboBox, and you have implemented NOSC's History List feature, the combo
box of the corresponding Dialog will automatically be filled with the file names from the
History List.

Events
See Also:
Properties Tasks

NOSC events do not translate one to one with the OnClick events of your menu items. When
a user clicks one of the linked menu items (eg; the Open menu item), NOSC will generate up
to three separate events.

The purpose of breaking a menu event into multiple events is to present you with simple,
discrete events that are easily dealt with. Within the context of each of the events, you do
not need to worry about any of the related complexities associated with a menu event.

For example, when the user clicks on File|Open, NOSC will first issue an OnSaveQuery
event. You simply have to tell NOSC whether the current file has changes that need to be
saved or not. If there are changes are to be saved, NOSC will check whether the current file
has been named and, if not, will display the Save Dialog for the user. If a file name is
selected here, you will then receive an OnSave event in order to save the file changes to
disk. The user will then be presented with the Open Dialog and, if a file is selected, an
OnOpen event is issued so you can open and display the selected file.

The result of this process is that each of your NOSC event handlers will be very simple and
easy to code. Within each of the events, you do not need to care which menu selection
caused the event or what other events are involved.

OnNew OnOpen OnSave
OnSaveAs OnSaveQuery OnCloseQuery

¨ Attaching Events to NOSC

¨ Responding to NOSC events

Attaching Events to NOSC
See Also:
Responding to NOSC events

In order to perform, NOSC must be given access to the menu items you design for creating,
opening and saving files. These, typically, are the New, Open, Save, and Save As menu
items which are, also typically, part of a top-level menu item called File. The actual names
do not matter nor does their position in your particular menu structure.

NOSC has four corresponding properties that display in the Object Inspector. These are
MenuNew, MenuOpen, MenuSave, and MenuSaveAs. Each of these properties will display all
the menu items currently defined in your form making it an easy task to assign the
corresponding ones.

Although most applications will contain all four of these menu items, it isn't necessary. For
example, if your application doesn't allow new files to be created, then you'll simply leave
the MenuNew property unassigned. If your application is a read-only viewer, then you'll only
have an Open menu item to assign. The important point is that whichever of these four
standard menu items you have in your application, you must assign them to NOSC.

At runtime, NOSC assigns its own event handlers to the OnClick event of these menu items.
This allows NOSC to handle these events for you. In turn, NOSC re-issues its own events to
you, but in a modified and more controlled form (see Responding to NOSC events).

NOSC also, automatically at runtime, assigns its own event handler to your form's
OnCloseQuery event. This is necessary in order to allow NOSC to know when the application
is about to close. This event is re-issued to you directly, so you can still use it as you would if
youreceived it directly from your form.

Important: Because NOSC assigns itself to the OnClick methods of these particular menu
items, you must remember not to try creating event handlers for them in your form. Any
code you define for these events will be ignored during execution    You must, instead,
respond to the events issued by NOSC. This also applies to the OnCloseQuery event.

Responding to NOSC events
See Also:
Attaching Events to NOSC

Responding to NOSC events is much simpler than responding to the corresponding "raw"
events. This is the main purpose of NOSC; to do as much of the work as possible for you
before passing the events on to you. You are still responsible for the actual management of
the files handled in your application as NOSC has no knowledge of what these may be.

There are six NOSC events. These correspond to the OnClick methods for the four menu
items you assign to NOSC; the form's OnCloseQuery event; and one unique NOSC event (see
Attaching Events to NOSC).

The six events are: OnNew, OnOpen, OnSave, OnSaveAs, OnSaveQuery, and OnCloseQuery.

The key to remember when responding to these events is that you no longer need to be
concerned with any other aspect of your program except that specific event. For example,
when you respond to the OnSave event, NOSC has already ensured that a valid file name
has been selected, so you need only save the file. When you respond to an OnNew event,
you do not need to be concerned with whether changes to the current file have been saved
yet, you will have already received an OnSave event for the current file

All of the events have two parameters. The OnCloseQuery event is identical to your form's
OnCloseQuery event. The other five events all contain two parameters: the first is the
standard Sender parameter. If you need to see where this event originated from, you can
check Sender. For example, if the user selected New, in the OnSaveQuery event you will
find that Sender is your TMenuItem component corresponding to the New menu item; the
second parameter is called Proceed. In all cases, the Proceed parameter defaults to True.
If necessary, you can set this to False in order to modify subsequent NOSC behavior for the
current chain of events. Details of what this effect is depends on the particular event.

Open and Save Dialogs
NOSC automatically instantiates and manages a TOpenDialog and TSaveDialog component.
Many of the NOSC properties you can set in the Object Inspector are specifically for these
components and are passed on directly to their corresponding properties. In some cases,
you will see corresponding properties for each of the dialogs (such as osOpenTitle and
osSaveTitle), in other cases, there is one NOSC property that is used for both dialogs (such
as osDefaultExt).

You never have to worry about executing these dialogs. NOSC executes them when
necessary. As part of managing these dialogs for you, NOSC always ensures they reflect the
currently open file name and directory. For example; if the user opens a text file in the
Windows directory, the next time the Open or Save dialog appears, it will be initialized to
start in the Windows directory and will display the current file name.

The following NOSC properties relate directly to the Open and Save Dialogs:

osDefaultExt osFilter osFilterIndex osOpenOptions
osSaveOptions osOpenTitle osSaveTitle

osOpenHelpCtx osSaveHelpCtx osOpenEditStyle
osSaveEditStyle

HistoryList
See Also:
MaxHistory MenuAfter IniFile IniFileName

The HistoryList property is runtime and read-only. It is of type TStringList and holds the
most recent opened file names up to the maximum specified in the MaxHistory property.
NOSC maintains this list and uses it as the source for building the history menu. It is written
to and loaded from the application's initialization (INI) file.

You can easily retrieve the file names from HistoryList using the same methods as any
TStringList object.

OnSaveQuery
See Also:
OnNew OnOpen OnSave OnSaveAs OnCloseQuery

Open and Save Dialogs

Whenever the user attempts to create or open a file, or close the application, NOSC will
issue an OnSaveQuery event. The purpose of this event is for you to let NOSC know
whether the file is to be saved or not. The FileName property will contain the name of the
currently open file, or the UntitledString if the file hasn't yet been named. Typically, you will
check whether the file has unsaved changes and, if so, will inform the user, allowing the user
to decide whether to save or not.

The Proceed parameter defaults to True, meaning you will subsequently receive an
OnSave event so you can perform the actual save. If the current file is untitled, the user will
be presented with the Save Dialog before you are issued the OnSave event.

Setting the Proceed parameter to False tells NOSC that no save is necessary and will carry
on with the user's request.

Example:
This example checks for modifications to the text file. If there are any, the Proceed
parameter is set to the result of asking the user, otherwise it is set to False.

procedure TForm1.NOSC1SaveQuery(Sender: TObject; var Proceed: Boolean);
begin
    if Memo1.Modified then
        Proceed := MessageDlg(NOSC1.FileName + ' has changed. Save?',
            mtConfirmation, [mbYes, mbNo], 0) = mrYes
    else
        Proceed := False;
end;

